Reducing Tree (and Soil!) Damage during Construction

Nina Bassuk
Urban Horticulture Institute
Cornell University
Ecosystem Services

-- Stormwater Reduction
Water and Air Quality Improvement
Energy Conservation
Carbon Sequestration
Urban Heat Island Mitigation
Habitat for pollinators /animals
Tree Preservation Concepts

- Tree protection is soil and root protection
- Planning the construction
- Critical root zone and no cut zone
- Tree protection zone and tree protection fencing. Directional boring.
- Site remediation and tree treatment
Three easy ways to kill a tree in five years or less:

- Soil Compaction in the Critical Root Zone
- Cutting the Roots
- Backfilling over the Roots
Compacted soil showing loss of structure.
Planning the Construction

• How much will be excavated? How will it be removed or used on site?
• Where will the utility/curb trenches be?
• How will the crews get materials to the site?
• What type of equipment do they have? How big is it?
• Where will they store their materials?
• How much room do they need to work?
• Parking?
The Development Team
Soil compaction on construction site
General Root Morphology

• Roots extend 2.5-3 times the crown radius
• Most roots (>60%) located outside the drip line
• Tap roots rarely present in mature trees
• >95% of roots are found in the top 3’ of soil
Critical Root Zone (CRZ)

- Typically, 1 foot radius protected for every 1” dbh
- Check your local jurisdiction for CRZ requirements
Red Oak ‘protecting’ construction materials
TREES GREATER THAN 8” DBH
(DBH=Diameter Breast Height):

1” DBH OF THE TREE = 1’ RADIUS OF THE CRITICAL ROOT ZONE (CRZ)

10” DBH TREE
10’ RADIUS CRZ

TREES 8” DBH AND SMALLER:

8 FT. RADIUS CIRCLE AROUND THE TRUNK OF THE TREE.

6” DBH TREE
8’ RADIUS CRZ

SPECIMEN TREES

1” DBH = 1.5’ RADIUS OF THE CRITICAL ROOT ZONE.

30” DBH TREE
45’ RADIUS CRZ

TREE PROTECTION DETAIL
FOR DETERMINATION OF CRITICAL ROOT ZONE

ARLINGTON COUNTY, VIRGINIA
DEPARTMENT OF PUBLIC WORKS

DRAWING NO. R-7.7
No Cut Zone (Structural CRZ)

- Typically within 6’ – 10’ of a mature (24” dbh) tree
- Cutting within this radius can destabilize the tree
- Design so there will be no root severance within 6-10’ of a mature tree
• Destabilizing the tree
• Root severance within the zone of rapid taper (or no cut zone)
What Goes on a Tree Preservation Plan Sheet

• Tree inventory
• Trees labeled and CRZs noted
• Trees to be removed labeled
• Tree protection fence
• Mulched areas for access spaces inside the CRZs of trees
• Access route
• Storage areas, parking areas
• Tree protection specifications
• Details
Tree Inventory

- Code or number
- Tree species—scientific and common name
- DBH
- Condition Rating (Good, Fair, Poor)
- Notes—Include trees that will be removed

<table>
<thead>
<tr>
<th>No.</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>DBH</th>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acer campestre</td>
<td>Hedge Maple</td>
<td>6"</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Quercus phellos</td>
<td>Willow Oak</td>
<td>24"</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Quercus phellos</td>
<td>Willow Oak</td>
<td>26"</td>
<td>Fair</td>
<td>canopy dieback</td>
</tr>
<tr>
<td>4</td>
<td>Acer negundo</td>
<td>Boxelder</td>
<td>13"</td>
<td>Good</td>
<td>included bark in main fork</td>
</tr>
<tr>
<td>5</td>
<td>Cornus florida</td>
<td>Dogwood</td>
<td>5"</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Acer platanoides</td>
<td>Norway Maple</td>
<td>18"</td>
<td>Good</td>
<td>invasive</td>
</tr>
</tbody>
</table>
How Do We Manage the Tree Resources?

• We Can Move the Tree/Trees?
• We Can Go Under the Tree/Trees?
• We Can Go Around the Tree/Trees?
• We Can Remove the Tree/Trees?
Trees Labeled and CRZs Shown
Tree Protection Fence

- Should be the most clearly communicated graphic on the plan
- Better to group trees within a fence than fence each individually
- Completely enclose all tree protection zones
- Don’t forget to protect street trees
- Ideally, all work is done outside the CRZs of the trees
- Keep as work on hard surfaces as much as possible
Access Routes and Storage Areas

Construction staging only in these three parking spaces.
Site Specific Specifications

TREE PROTECTION SPECIFICATIONS

Definitions: Shall be according to ANSI A300 (Part 5)-2012 Tree, Shrub, and Other Woody Plant Maintenance—Standard Practices (Management of Trees and Shrubs During Site Planning, Site Development, and Construction)

The following tasks shall be completed prior to commencing construction work:

1. The lower branches from trees 2, 5, and 6 will be removed to elevate the canopy. This work will be done prior to construction and should be completed by an ISA Certified Arborist under the direct supervision of the landscape architect/designer.

2. A protective layer of wood chip mulch, 9” thick, shall be laid down on the access ways as noted on the plan. The chips will be spread using hand tools only, such as shovels and wheelbarrows.

3. Tree protection zone barriers shall be placed as shown on plan. The barriers shall be 6’ tall chain link continuous fencing that is easily visible and is marked by protective signage in both English and Spanish. The tree protection zone shall conform to the specifications outlined in Tree Preservation Methods, City of Oakville, VA. The tree protection zone barriers shall not be attached or anchored to the tree or trees to be preserved.
Reduce Compaction

- Temporary thick (8-12” deep) mulch layer (wood chips) over root zone
- Plywood sheets or mats over mulch for additional weight dispersal
Mitigating Work Inside a CRZ

- Work has to be done inside at least some of the trees’ CRZs
Protecting Tree Roots From Construction Damage

Poor or no root protection

Good root protection
1. Minimum six (6) foot high temporary chainlink fence shall be placed at the critical root zone or designated limit of disturbance of the tree to be saved; fence shall completely encircle trees. Install fence posts using pier block only. Avoid post or staking into major roots. Modifications to fencing material and location must be approved by Planning Official.

2. Treatment of roots exposed during construction: For roots over one (1) inch diameter damaged during construction, make a clean straight cut to remove damaged portion of root. All exposed roots shall be temporarily covered with damp burlap to prevent drying and covered with soil as soon as possible.

3. No stockpiling of materials, vehicular traffic, or storage of equipment or machinery shall be allowed within the limit of the fencing. Fencing shall not be moved or removed unless approved by the City Planning Official. Work within protection fence shall be done manually under the supervision of the on-site Arborist and with prior approval by the City Planning Official.

4. Fencing signage as detailed above must be posted every fifteen (15) feet along the fence.

Tree Protection Fencing Detail
(for public and private trees)
Managing the Site
Mitigating Work Inside a CRZ

• Avoid impacting more than 30% of the CRZ total area and NONE of the No Cut Zone

Red Maple tree, 26” dbh
2122 sf CRZ, 30% is 636 sf

The area inside a circle is pi times radius squared.

3.14 (26 x 26) = 2,122 sf
Boring (HDD Horizontal Directional Drilling)
Tree dieback post construction
Remediation

- Berms, planters, landscape beds, radial trenching
- Air spade decompaction and compost incorporation
- Scoop and Dump technique
- Structural Soil backfill
Radial Trenching

Radial trenching--plan view

Radial trenching--section
Air-Spade Excavation
Air-Spade large scale trenching
Benefits of Preparing a Landscape Bed

• provides greater rooting volume for plants
• easier for plant roots to establish
• more consistent water movement into bed
• easy to plant once bed is prepared
Soil compaction during construction
Scoop & Dump method of soil remediation

- Apply a layer 6-8” of compost to compacted soil
- Use backhoe bucket to dig down to 18”
- Bucket is lifted with topsoil / compost mix 3 feet into the air
- Soil/compost mix is dropped onto the ground
- Landscape plants are directly planted in the soil
- Surface mulch added every year to replenish organic matter
S&D not done under existing trees
Required compaction prior to laying pavement.
Honeylocust in Lawn and in Pavement
Loading or Compaction Effort

- Stone particle
- Soil particle
- Air or water pore
- Stone contact points where load is transferred
How do we Keep Trees Alive on a Typical Construction Site?

• Early involvement of an International Society of Arboriculture Certified Arborist is critical for success

• Architects must consider tree biology in the design phase

• Civil Engineers must respect the trees’ Critical Root Zone

• The field personnel must understand and respect the commitment of the ownership team to protect the trees

• Communication at all levels of involvement is critical