Remediating compacted soils compromised by urban construction.

By Miles S. Sax & Nina Bassuk

Urban Horticulture Institute
Section of Horticulture
Strategies for protecting or remediating soil impacted by construction

- Protect soil prior to construction (CRZ).
- Calculate soil volume for plant ‘design size.’
- Create breakout zones (paths to better soil).
- Use raised landscape planting beds to create shared rooting space. Bury poor soil.
- Amend in place. “Scoop and Dump”
- Replace soil.
Critical Root Zone (CRZ)

- Typically, 1 foot radius protected for every 1” dbh
- Use 1.5 foot per every 1” dbh for specimen trees
How Much Soil Does a Tree Need?

2 cubic feet of soil for every 1 square foot of crown projection.
EX. Tree with expected 20' diameter crown spread

CP = $3.14 \times \text{radius (10')}^2$

= $314 \text{ ' squared} \times 2 \text{ (cubic feet)}$

20 ft. x 20 ft. x 18” (1.5 ft.) deep
For columnar trees, use ‘expected CRZ’ for soil preparation zone.
Volume effects on tree growth.
Honeylocust in Syracuse, NY.
Tilia cordata in restricted soil (right) and borrowed soil (left).
Detecting roots beyond the sidewalk
Sidewalk heaving
Break-out path in a sidewalk
Soil compaction during construction
Compacted soil showing loss of structure.
Soil Health Test

- Physical
 - Aggregate Stability (%)
 - Water Holding Capacity (%)
 - Bulk Density (g/cm³)
 - Texture
 - Resistance (PSI)

- Biological
 - Organic Matter (%)
 - Active Carbon (ppm)
 - Soil Respiration
 - Soil Protein

- Chemical
 - pH
 - Nutrients (P, K, Ca, Mg, Fe, Mn, Zn)
Cornell Soil Health Assessment

Sample ID: J_151
Field/Treatment: Musgrave Field E PLOW TILL
Tillage: 7-9 inches
Crops Crown: MIX, MIX, MIX
Date Sampled: 5/21/2014
Given Soil Type: Lima
Given Soil Texture: Silt Loam
Coordinates: Coordinates Not Provided

Measured Soil Textural Class
- **Loam**
- **Sand:** 40%
- **Silt:** 45%
- **Clay:** 15%

Test Report

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
<th>Rating</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Water Capacity</td>
<td>0.11</td>
<td>17</td>
<td>Water Retention and Availability</td>
</tr>
<tr>
<td>Surface Hardness</td>
<td>210</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Subsurface Hardness</td>
<td>300</td>
<td>46</td>
<td>Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Runoff</td>
</tr>
<tr>
<td>Aggregate Stability</td>
<td>19.1</td>
<td>20</td>
<td>Organic Matter Quality, Organic N Storage, N Mineralization</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>3.4</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>ACE Soil Protein Index</td>
<td>4.6</td>
<td>20</td>
<td>Organic Matter Quality, Organic N Storage, N Mineralization</td>
</tr>
<tr>
<td>Root Pathogen Pressure</td>
<td>5.3</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Respiration</td>
<td>6.94</td>
<td>28</td>
<td>Soil Microbial Abundance and Activity</td>
</tr>
<tr>
<td>Active Carbon</td>
<td>411</td>
<td>14</td>
<td>Energy Source for Soil Biota</td>
</tr>
<tr>
<td>pH</td>
<td>7.9</td>
<td>0</td>
<td>High pH: Toxicity, Nutrient Availability</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4.9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>83.8</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Minor Elements
- **Mg:** 295
- **Fe:** 0.7
- **Mn:** 18.3
- **Zn:** 0.4

Overall Quality Score
- **44**
- **Low**
Soil remediation and raised landscape beds
Study Sites

- Roberts 2009
- CCC 2012
- Plant Science 2007
- Mann 2010
- Centennial 2004
- Fernow 2001

= Study Site (n=6) = Control (n=4)
Scoop & Dump method of soil remediation

- Apply a layer 6-8” of compost to compacted soil
- Use backhoe bucket to dig down to 18”
- Bucket is lifted with topsoil / compost mix 3 feet into the air
- Soil/compost mix is dropped onto the ground and smoothed
- Landscape plants are directly planted in the soil
- Surface mulch added every year to replenish organic matter
S&D not done under existing trees
Aggregate Stability

22% stability
Long-term plow till

72% stability
Long-term no till
Aggregate Stability (%) (n=30)

<table>
<thead>
<tr>
<th></th>
<th>Scoop & Dump</th>
<th>Unamended</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Stability (%)</td>
<td>72.41</td>
<td>34.90</td>
<td>4.88</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Organic Matter

• Primarily refers to carbon derived from living sources:
 – Plant & animal residues
 – Living & dead microorganisms
Organic Matter (%) (n=30)

<table>
<thead>
<tr>
<th>Scoop & Dump</th>
<th>Unamended</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.43</td>
<td>3.23</td>
<td>0.58</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Active Carbon

Organic matter that is readily available as a food source for microorganisms
Active Carbon (mg/kg\(^{-1}\)) (n=30)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean (mg/kg(^{-1}))</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoop & Dump</td>
<td>1022.47</td>
<td>361.60</td>
<td><.0001</td>
</tr>
<tr>
<td>Unamended</td>
<td>361.60</td>
<td>51.51</td>
<td></td>
</tr>
</tbody>
</table>
Available Water Holding Capacity (n=30)

<table>
<thead>
<tr>
<th></th>
<th>Scoop & Dump</th>
<th>Unamended</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.23</td>
<td>0.15</td>
<td>0.01</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Potentially Mineralizable Nitrogen (mg/kg\(^{-1}\)) (n=30)

<table>
<thead>
<tr>
<th>Scoop & Dump</th>
<th>Unamended</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.53</td>
<td>3.11</td>
<td>4.41</td>
<td>.0005</td>
</tr>
</tbody>
</table>
Resistance (Penetrometer)

Root limiting resistance = >300 psi
Resistance (Penetrometer)

Average Depth of Root Limiting Resistance (300 PSI)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoop & Dump</td>
<td>9.74</td>
<td>2.24</td>
</tr>
<tr>
<td>Unamended</td>
<td>3.44</td>
<td>1.65</td>
</tr>
</tbody>
</table>
Bulk Density
Weight/ Volume = Bulk Density
grams/cm³

Root Limiting Bulk Density

<table>
<thead>
<tr>
<th>Texture</th>
<th>Bulk Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.75 (g/cm³)</td>
</tr>
<tr>
<td>Silt & Clay</td>
<td>1.40 (g/cm³)</td>
</tr>
</tbody>
</table>
The bar chart shows the bulk density (g/cm³) for two conditions: Scoop & Dump and Unamended. The chart indicates that the bulk density for Scoop & Dump is 0.89 g/cm³, and for Unamended it is 1.47 g/cm³. The table below provides the mean, standard error, and p-value for each condition:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoop & Dump</td>
<td>0.89</td>
<td>0.06</td>
<td><.0001</td>
</tr>
<tr>
<td>Unamended</td>
<td>1.47</td>
<td>0.06</td>
<td><.0001</td>
</tr>
</tbody>
</table>
Scoop & Dump Over Time
Bulk Density

Bulk Density (g/cm³) Over time ($R^2= 0.50$, $P<.0001$, $n=30$)

Years since Remediation

Bulk Density (g/cm³)
Active Carbon

Active Carbon (mg/kg\(^{-1}\)) Over Time (\(R^2 = 0.57\), \(P<.0001\), \(n=30\))
Potentially Mineralizable Nitrogen

PMN (mg/kg\(^{-1}\)) Over Time (\(R^2=0.61\), \(P<.0001\), \(n=30\))
Scoop & Dump

This method has shown:

• Soil resistance decrease
• Pore volume increase
• Reduction in bulk density
• Increased C & N
• Improved soil structure
• Improved aggregate stability
• Improved plant growth response
• Long term improvement of soil conditions and plant growth (13 years)
Treatments:
0% compost (100% soil)
33% compost
50% compost
100% compost
Compost Specification for Compaction Remediation in a Landscape Bed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units of Measurement</th>
<th>Recommended Range</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>pH units</td>
<td>6.5 - 8.0</td>
<td>Depending on pH of soil</td>
</tr>
<tr>
<td>Soluble Salt Content</td>
<td>dS/m (mmhos/cm)</td>
<td>1 - 4</td>
<td></td>
</tr>
<tr>
<td>Organic Matter</td>
<td>% dry weight basis</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>C:N</td>
<td>Ratio</td>
<td>10:1 - 20:1</td>
<td>Depending on soil texture and moisture level</td>
</tr>
<tr>
<td>Total N</td>
<td>% dry weight basis</td>
<td>1.0 - 4.0</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorous</td>
<td>% P2O5 dry weight basis</td>
<td>0.5 - 2.0</td>
<td></td>
</tr>
<tr>
<td>Total Potassium</td>
<td>% K2O dry weight basis</td>
<td>1.0 - 5.0</td>
<td></td>
</tr>
</tbody>
</table>
Scoop & Dump vs. Unamended

Study Site: In garden bed

Control Site: In turf

- Mulch
- Scoop & Dump
- Resident Subsoil

- Turf
- Unam.
Soils Collected
Leaf Area (cm²) by Treatment (n=30)
(P<0.0002)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Leaf Area (cm²)</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoop & Dump</td>
<td>933.18</td>
<td></td>
</tr>
<tr>
<td>Unamended</td>
<td>579.89</td>
<td>59.14</td>
</tr>
</tbody>
</table>
Dry Weight Shoots (g) by treatment (n=30) (p=0.0015)

<table>
<thead>
<tr>
<th>Scoop & Dump</th>
<th>Unamended</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.17</td>
<td>7.03</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Bulk Density (g/cm³) by Treatment (n=30) (p<.0001)

<table>
<thead>
<tr>
<th>Texture</th>
<th>Bulk Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.75</td>
</tr>
<tr>
<td>Silt & Clay</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Avg. Bulk Density

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Avg. Bulk Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoop & Dump</td>
<td>0.97</td>
</tr>
<tr>
<td>Unamended</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Root Limiting Bulk Density

<table>
<thead>
<tr>
<th>Texture</th>
<th>Bulk Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>1.75</td>
</tr>
<tr>
<td>Silt & Clay</td>
<td>1.40</td>
</tr>
</tbody>
</table>
Linear Regression Dry Weight Shoots (g) by Bulk Density (g/cm³)

\(R^2 = 0.52 \) (n=30) (p < .0001)

- Scoop & Dump
- Unamended
Destructive Harvest Observations

Root avoidance of compacted soils
Destructive Harvest Observations

Root Growth in ‘Scoop and Dump’ Soil
Radial Trenching

Radial trenching--plan view

Radial trenching--section
Questions?

Additional Resources

• Cornell Urban Horticulture Institute
 https://blogs.cornell.edu/urbanhort/

• Cornell Soil Health Test
 http://soilhealth.cals.cornell.edu/extension/manual.htm

• Cornell Nutrient Analysis Lab (Compost Testing)
 – http://cnal.cals.cornell.edu/

Publication

Long-Term Remediation of Compacted Urban Soils by Physical Fracturing and Incorporation of Compost
MS Sax, N Bassuk, H van Es, D Rakow - Urban Forestry & Urban Greening, 2017